Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 12: 1079297, 2022.
Article in English | MEDLINE | ID: covidwho-2288412

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Swine , Animals , Coronavirus Infections/veterinary , Alphacoronavirus/genetics , Diarrhea/veterinary , Epithelial Cells
2.
Cell Biosci ; 12(1): 7, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1634540

ABSTRACT

BACKGROUND: One of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused coronavirus disease 2019 (COVID-19) pandemic and threatened worldwide. However, therapy for COVID-19 has rarely been proven to possess specific efficacy. As the virus relies on host metabolism for its survival, several studies have reported metabolic intervention by SARS-CoV-2. RESULTS: We investigated the coronavirus-metabolic hijacking using mouse hepatitis virus (MHV) as a surrogate for SARS-CoV-2. Based on the altered host metabolism by MHV infection, an increase of glycolysis with low mitochondrial metabolism, we tried to investigate possible therapeutic molecules which increase the TCA cycle. Endogenous metabolites and metabolic regulators were introduced to restrain viral replication by metabolic intervention. We observed that cells deprived of cellular energy nutrition with low glycolysis strongly suppress viral replication. Furthermore, viral replication was also significantly suppressed by electron transport chain inhibitors which exhaust cellular energy. Apart from glycolysis and ETC, pyruvate supplement suppressed viral replication by the TCA cycle induction. As the non-glucose metabolite, fatty acids supplement decreased viral replication via the TCA cycle. Additionally, as a highly possible therapeutic metabolite, nicotinamide riboside (NR) supplement, which activates the TCA cycle by supplying NAD+, substantially suppressed viral replication. CONCLUSIONS: This study suggests that metabolite-mediated TCA cycle activation suppresses replication of coronavirus and suggests that NR might play a role as a novel therapeutic metabolite for coronavirus.

3.
Biomed Pharmacother ; 131: 110694, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-758615

ABSTRACT

As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL